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Abstract

A constitutive description is proposed for a single pearlitic colony based on its composition of lamellas of ferrite and

cementite with a very thin interlamellar spacing. Both phases are assumed to be elastoplastic. The relationship between

the increments of overall stress and strain is derived and the corresponding numerical algorithm is developed. The

mechanical behavior of the colony subjected to proportional or non-proportional loading is investigated, and it shows

that the overall response is anisotropic. Finite element analysis is conducted to analyze the influence of the interlamellar

spacing on the mechanical response of the colony. It shows that the proposed model can not only describe the behavior

of the pearlitic colony with extremely small interlamellar spacing, but also work with sufficient accuracy in the case of

moderate interlamellar spacing. The constitutive response of each phase in a colony can be obtained simultaneously,

which is an important step towards developing theories of microstructure-based damage and failure analysis. � 2001

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Pearlitic steel is composed of numerous pearlitic colonies with randomly distributed orientations. Each
colony is composed of many alternatively arranged parallel thin lamellas of ferrite and cementite. The
pearlitic steel with fine lamellas possesses excellent mechanical properties such as high strength, good re-
sistance against wear, and high fatigue life, etc. (Langford, 1977; Clayton, 1980; Hodson and Preston, 1980;
Petez-Unzueta and Beynon, 1995; Sheng et al., 1998).

One of the most important properties of this kind of dual-phase materials is its locking-in interphase
residual stress capability (Bower, 1989). When the material is subjected to asymmetrical stress cycling, it
ratchets in the direction of mean stress, but the rate decreases gradually during the cycling. If the mean
stress is then removed, the material will ratchet back in the opposite direction during the following cyclic
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process, despite that the mean stress no longer exists (Bower, 1987, 1989; Bower and Johnson, 1989, 1990;
Peng and Ponter, 1994a). This particular behavior accounts for the extensive use of the material for rail
steel. Practically, the stress induced by rail/wheel contact is typically asymmetrical, but the ratcheting of
the material is strictly limited.

A constitutive model for pearlitic rail steel was proposed by Bower (1989) and Bower and Johnson
(1990), in which a new kinematic variable was introduced by modifying the model of Armstrong and
Frederick (1966). It greatly improved the description of the ratcheting behavior of the pearlitic steel. Peng
and Ponter (1994a) proposed a model, which separates the plastic deformation of pearlitic steel into the
plastic deformation of its soft phase and the elastic–plastic deformation of its hard phase. It can describe
the more complicated response of pearlitic steel, for instance, the non-vanishing steady ratcheting rate
during asymmetrical stress cycling. It was shown that, assuming an elastic hard phase, this model could be
reduced to Bower’s model (Peng and Ponter, 1994a). A micro/macroscopic analysis for the cyclic plasticity
of dual-phase pearlitic material was recently proposed by Fan (1999), taking into account the lamellar
microstructure of a single pearlitic colony. A self-consistent scheme was used to obtain the macroscopic
response, with which the cyclic plasticity of BS11 and the local stress evolution were analyzed.

The locking-in interphase residual stress capability and the plastic shakedown behavior of the dual-phase
material are closely related to the interaction between its two phases. In order to have an insight of the
particular macroscopic behavior, it is necessary to deeply understand the response of a single pearlitic
colony and its microstructural dependence.

In this paper, starting from the lamellar microstructure, a description for a single pearlitic colony is
obtained by assuming both ferrite and cementite phases being elastoplastic. The relationship between in-
cremental stress and strain, and the corresponding numerical algorithm are derived. The predicted behavior
of a single pearlitic colony subjected to proportional and non-proportional loading is investigated. It is
shown that the overall constitutive response is, in general, anisotropic due to the interaction between the
two phases. Finite element analysis is employed to study the influence of the interlamellar spacing on the
response of the colony. It can be seen that, the proposed model can not only describe the behavior of a
pearlitic colony with extremely small interlamellar spacing, but also predict with sufficient accuracy the
behavior of a colony with moderate interlamellar spacing. The constitutive response of the ferrite and
cementite phases in a colony can be obtained simultaneously, which is important for the development of a
microstructure-based damage and failure analysis.

2. Constitutive equation for elastoplastic media

As shown in Fig. 1, a pearlitic colony is composed of many fine lamellas of cementite and ferrite. In Fig.
1(a) the material was taken from the head of a rail which was on-line and full-length directly quenched after

Fig. 1. The observed microstructure of a pearlitic steels: (a) quenched directly after rolling; (b) hot rolled.

436 X. Peng et al. / International Journal of Solids and Structures 39 (2002) 435–448



rolling, while the material in Fig. 1(b) was taken from the head of a hot-rolled rail. It is clear that the
orientations of lamellas are almost identical. The average interlamellar spacing in Fig. 1(a) is around 136
nm while it is around 190 nm in the other case (Fig. 1(b)). The corresponding average sizes of both pearlitic
colonies are about 13 lm in diameter.

In pearlitic steel, ferrite phase serves as the soft phase while cementite represents the hard phase. The
strength of cementite is much higher than that of ferrite. The mechanical behavior of a pearlitic steel de-
pends strongly on that of cementite although the volume fraction of cementite V is only about 15%. It has
been found that the plastic deformability and the failure mode of cementite are closely related to the
thickness of cementite lamella. Langford (1977) pointed out that there is no evidence for gross plastic
deformation of cementite plates thicker than 0.1 lm, and there is no evidence for extensive, brittle frag-
mentation of cementite plates thinner than 0.01 lm. Noting that the average thickness of the cementite
plates in commercial pearlitic rail steels is mostly less than 0.03 lm, it can be conjugated that these ce-
mentite plates are fully or mostly plastic (Langford, 1977). Langford (1977) also demonstrated that, in
order for pearlite to work harden as it does, lamellar cementite must be ductile, because the generation of
the dislocations required in the pile-ups absorbs a significant fraction of the work of deformation. In the
following analysis, both cementite and ferrite are assumed to be elastoplastic.

For an initially isotropic and plastically incompressible continuum, an elastoplastic model was proposed
by Fan and Peng (1991) under the condition of isothermal and small deformation. It is related to the
endochronic plastic constitutive equation (Valanis, 1980), model of Chaboche et al. (1979) and some other
constitutive models (Peng et al., 1996; Chaboche, 1986; Watanabe and Atluri, 1986). The corresponding
incremental form of the constitutive equation can be expressed as (Peng and Fan, 1993)

DsðzÞ ¼ ADep þ BðznÞDz; ð1Þ

where Ds and Dep are the increments of deviatoric stress and plastic strain, respectively,

A ¼
Xn

r¼1

krCr; BðznÞ ¼ �
Xn

r¼1

krars
ðrÞðznÞ; ð2Þ

DsðrÞðzÞ ¼ krðCr De
p � ars

ðrÞðznÞÞDz; kr ¼
1� e�ar Dz

ar Dz
; Dz ¼ z� zn; ð3Þ

z is generalized time which is non-negative and increases monotonically during any plastic deformation
process due to the following definition of Dz:

Dz ¼ Df
f ðzÞ ; Df2 ¼ Dep : Dep; ð4Þ

f ðzÞ is a hardening function, Cr and ar ðr ¼ 1; . . . ; nÞ are material constants. Substituting the incremental
form of elastic constitutive equation

De� Dep ¼ Ds
2G

ð5Þ

into Eq. (1) leads to the following incremental elastoplastic constitutive equation (Peng and Fan, 1993)

Ds ¼ 2Gp Deþ TpBDz; ð6Þ
where e denotes deviatoric strain tensor, G is elastic shear modulus, and

Tp ¼ 1

�
þ A
2G

��1

; 2Gp ¼ ATp: ð7Þ
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Rewriting Eq. (4) as

Dz ¼ Dep

f 2Dz
: Dep ð8Þ

and making use of the following relationships

Ds ¼ Dr � 1
3
trðDrÞI2; De ¼ De � 1

3
trðDeÞI2; trðDrÞ ¼ 3KtrðDeÞ ð9Þ

with r and e being respectively stress and strain tensors, K elastic volumetric modulus, and I2 being the
identity tensor of rank two, one can derive the incremental constitutive equation as follows: (Peng and Fan,
1993)

fDrg ¼ ½D	fDeg; ð10Þ
where ½D	 represents tangential elastoplastic stiffness matrix which consists of two parts:

½D	 ¼ ½De	 þ
2ðG� GpÞ

H
½Dp	: ð11Þ

For a general 3-D problem, these matrices can be expressed as

fDrg ¼ Dr11;Dr22;Dr33;Ds12;Ds23;Ds31ð ÞT;
fDeg ¼ ðDe11;De22;De33;Dc12;Dc23;Dc31Þ

T;
ð12Þ

½De	 ¼

C1 C2 C2 0 0 0
C2 C1 C2 0 0 0
C2 C2 C1 0 0 0
0 0 0 Gp 0 0
0 0 0 0 Gp 0
0 0 0 0 0 Gp

2
6666664

3
7777775
; ð13Þ

being an elastic-like matrix,

½Dp	 ¼ C3fB11 B22 B33 B12 B23 B31 gTðDep11 Dep22 Dep33 Dep12 Dep23 Dep31 Þ ð14Þ
taking into account the contribution of the history and the current state of plastic strain to ½D	, and

C1 ¼ K þ 4
3
Gp; C2 ¼ K � 2

3
Gp;

C3 ¼
Tp

2Gf 2ðzÞDz ; H ¼ 1þ C3B : Dep:
ð15Þ

3. Constitutive model for a pearlitic colony

A cell of a pearlitic colony is shown in Fig. 2(a), where the white layers represent ferrite lamellas while
the black represent cementite ones. It is assumed that all the ferrite and cementite lamellas are parallel with
each other, alternatively arranged with perfect bond, and with a constant interlamellar spacing. A coor-
dinate system is fixed on the cell with x1x2 plane parallel to the lamellas and x3 perpendicular to the lamellas.
The thickness of each lamella is assumed to be sufficiently small so that the variations of stress and strain
in a lamella can be neglected. The in-plane strain components and out-of-plane stress components in all
lamellas are, therefore, identical and equal respectively to the corresponding components of the overall
strain and stress of the cell to meet the condition of compatibility, i.e.,

dec11 ¼ def11 ¼ de11; dec22 ¼ def22 ¼ de22; dcc12 ¼ dcf12 ¼ dc12; ð16Þ
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drc
33 ¼ drf

33 ¼ dr33; dsc13 ¼ dsf13 ¼ ds13; dsc23 ¼ dsf23 ¼ ds23; ð17Þ
where the superscripts c and f represent cementite and ferrite, respectively.

The other components of stress and strain can be determined by volume average as follows:

Drij ¼ V Drc
ij þ ð1� V ÞDrf

ij; ij ¼ 11; 22; 12;

Deij ¼ V Decij þ ð1� V ÞDefij; ij ¼ 33; 23; 13;
ð18Þ

where V is the volume fraction of cementite. Using Eq. (10), the incremental constitutive equations of
cementite and ferrite can be expressed as

fDrcg ¼ ½Dc	fDecg; fDrfg ¼ ½Df 	fDefg: ð19Þ
Substituting Eq. (19) into Eq. (18) yields the following incremental elastoplastic constitutive equation for a
pearlitic colony (see Appendix A):

D�rr
Dr̂r


 �
¼ B2 � B1B�1

3 B4 B1B�1
3

�B�1
3 B4 B�1

3

� 

Dêe
D�ee


 �
; ð20Þ

with

fD�rrg ¼ ðDr11; Dr22; Ds12 ÞT; fDr̂rg ¼ ðDr33; Ds23; Ds13 ÞT;
fD�eeg ¼ ðDe33; Dc23; Dc13 Þ

T
; fDêeg ¼ ðDe11; De22; Dc12 Þ

T
;

ð21Þ

B1 ¼ VAc
2ðAc

4Þ
�1 þ ð1� V ÞAf

2ðAf
4Þ

�1
;

B2 ¼ V ½Ac
1 � Ac

2ðAc
4Þ

�1Ac
3	 þ ð1� V Þ½Af

1 � Af
2ðAf

4Þ
�1Af

3	;
B3 ¼ V ðAc

4Þ
�1 þ ð1� V ÞðAf

4Þ
�1;

B4 ¼ �V ðAc
4Þ

�1Ac
3 � ð1� V ÞðAf

4Þ
�1Af

3

ð22Þ

and

½Ac
1	 ¼

Dc
1111 Dc

1122 Dc
1112

Dc
2211 Dc

2222 Dc
2212

Dc
1211 Dc

1222 Dc
1212

2
64

3
75; ½Ac

2	 ¼
Dc

1133 Dc
1123 Dc

1131

Dc
2233 Dc

2223 Dc
2231

Dc
1233 Dc

1223 Dc
1231

2
64

3
75;

½Ac
3	 ¼

Dc
3311 Dc

3322 Dc
3312

Dc
2311 Dc

2322 Dc
2312

Dc
3111 Dc

3122 Dc
3112

2
64

3
75; ½Ac

4	 ¼
Dc

3333 Dc
3323 Dc

3331

Dc
2333 Dc

2323 Dc
2331

Dc
3133 Dc

3123 Dc
3131

2
64

3
75;

ð23Þ

Fig. 2. Lamellar microstructure of a pearlitic colony cell and FE mesh: (a) a cell of a pearlitic colony and (b) FE mesh of the cell.
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where Dc
ijkl denotes element ijkl in the tangential elastoplastic matrix of cementite ½Dc	 (see Eqs. (11), (13),

(14) and (19)). Replacing the element Dc
ijkl with Df

ijkl in the tangential elastoplastic matrix of ferrite ½Df 	, one
immediately obtains Af

1 through Af
4 from Eq. (23).

Eq. (20) describes the overall elastoplastic behavior of a pearlitic colony, which takes into account
the microstructure and the cementite volume fraction. It can be seen that the tangential elastoplastic matrix
is anisotropic, which is associated with the anisotropic nature of a pearlitic colony. It is important to
note that the constitutive description for ferrite and cementite plates in a pearlitic colony can be ob-
tained simultaneously by Eq. (19), giving rise to understand the individual constitutive behavior of each
phase.

4. Analysis of the elastoplastic response of a single pearlitic colony

In this section, the responses of a single pearlitic colony subjected to proportional and non-proportional
straining, and the cyclic ratcheting under asymmetrical loading are analyzed using the proposed consti-
tutive model.

It has been reported that the elastic properties of both the ferrite and the cementite are almost identical
(Langford, 1977) and in the following they are prescribed as

Ec ¼ Ef ¼ E ¼ 210 GPa; Gc ¼ Gf ¼ G ¼ 80 GPa;

where Ec and Ef are respectively the Young’s moduli of cementite and ferrite, Gc and Gf are the elastic shear
moduli of the two phases, respectively, and E and G are the Young’s modulus and the elastic shear modulus
of the corresponding pearlitic colony, respectively. According to the assessment of the strengths of ferrite
and cementite (Langford, 1977; Park and Bernstein, 1979), the following plastic properties are assumed in
the following analysis:

Cf
1;2;3 ¼ ð450; 80; 4:1Þ GPa; af

1;2;3 ¼ 4000; 420; 74;

Cc
1;2;3 ¼ ð9500; 2800; 650Þ GPa; ac

1;2;3 ¼ 50000; 3000; 400:

For the sake of simplicity without losing generality, the hardening function is assumed to be equal to one
for both ferrite and cementite. It can be easily found, for the given material parameters, that the strength of
cementite is about seven times that of ferrite. In the following analysis, the volume fraction of cementite V is
prescribed as 13%.

The numerical process for a stress-controlled condition can be stated as follows:

(a) With the results obtained by the kth iteration of the ith increment of loading, the tangential elasto-
plastic matrices ½Dc	 and ½Df 	 can be obtained using Eq. (11).
(b) Calculate Bi ði ¼ 1; 2; 3; 4Þ by Eq. (22), and then elastoplastic matrix of a pearlitic colony ½D	 by Eq.
(20).
(c) For a given increment of overall stress fDrg, the corresponding increment of overall strain fDeg can
be determined by solving Eq. (20).
(d) The increments of the unknown stress and strain components for the cementite and ferrite fD�rrcg,
fD�rrfg, fD�eecg and fD�eefg can then be respectively derived using Eqs. (A.4) and (A.5).
(e) For cementite, the incremental deviatoric stress fDscg and strain fDecg, the generalized time incre-
ment Dfc and the hardening function f cðzcÞ as well as Dzc can be calculated by Eq. (4). For ferrite,
the corresponding quantities can be obtained similarly.
(f) Calculating fDsðrÞcg and fDsðrÞfg by Eq. (3) and modifying fBcg and fBfg by Eq. (2), respectively.
(g) If the following defined error d is less than the tolerance d0, i.e.,
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d ¼ max
Dzki � Dzk�1

i

Dzki

����
����
c

;
Dzki � Dzk�1

i

Dzki

����
����
f

� 

6 d0;

then the iteration for the ith increment of loading is terminated. After modifying the corresponding
quantities, one starts the next increment of loading.

For a strain-controlled condition, the similar algorithm can be performed without difficulty.
Fig. 3 shows the response of a single pearlitic colony subjected to e11 (tensile strain in x1 direction). It is

known from Eq. (16) that the ferrite and cementite lamellas undergo an identical strain e11, and their re-
sponses are also shown in Fig. 3. The maximum stress in ferrite is only around 435 MPa, while in the case of
cementite, this value is clearly higher, i.e., 3374 MPa. The saturated stress of the pearlitic colony is about
819 MPa, being easily obtained by Eq. (18).

The response of a single pearlitic colony subjected to uniaxial strain e33 (tensile strain in x3 direction) is
given in Fig. 4. Computation shows that the overall saturated value of r33 in the pearlitic colony is also
about 819 MPa, which is approximately identical with the saturated value of r11 corresponding to the
uniaxial strain e11 (Fig. 3). In this direction, the tensile stresses in the ferrite and cementite are almost
identical with the overall stress component r33, i.e., rf

33 ¼ rc
33 ¼ r33 ¼ 819 MPa (Eq. (17)). It has already

Fig. 3. Response of a single pearlitic colony subjected to uniaxial strain e11.

Fig. 4. Response of a single pearlitic colony subjected to uniaxial strain e33.
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greatly exceeded the tensile strength of ferrite. Detailed analysis shows that in this case the equivalent
stresses rf

e and rc
e in the ferrite and cementite are respectively 435 and 3374 MPa (Fig. 4). These magnitudes

are similar to those related to uniaxial strain e11. But, the volumetric stresses rf
kk and rc

kk, in both phases are
1585 and �4287 MPa (Fig. 4), respectively. This is quite different from those in the colony subjected to
uniaxial strain e11, where the volumetric stresses in both the ferrite and cementite phases are identical to the
values of rf

11 and rc
11. Although the existence of the tensile volumetric stress increases the load-baring

capability of ferrite to some extent, it increases the risk of the initiation and growth of damage. If the single
pearlitic colony is compressed in x3 direction, the volumetric stresses in ferrite will become negative while
that in cementite positive. The compressive volumetric stress helps reducing damage in ferrite, while the
tensile volumetric stress in cementite may be acceptable because of the much higher strength of cementite,
which accounts for the extensive application of pearlitic steel as rail steel.

When a single pearlitic colony is subjected to pure shear strain c13, computation shows that the saturated
shear stress sf13 ¼ sc13 ¼ s13 ¼ 253 MPa, and the saturated equivalent stress is 437 Pa (Fig. 5), being just the
strength of ferrite. It indicates that when a single pearlitic colony is subjected to c13, its strength is solely
determined by the strength of ferrite. The relationship between the equivalent stress and strain of the colony
subjected respectively to c12 is also shown in Fig. 5. In this case, the saturated equivalent stress is about 819
MPa, being the combination of the strengths of ferrite and cementite by their volume fractions (Eq. (17)).
The comparison between the two shear stress–strain responses indicates the anisotropy of the pearlitic
colony.

In order to study the anisotropic property of a single pearlitic colony, the stress responses along 90� out-
of-phase circular paths in the planes of e11–c12=

ffiffiffi
3

p
, e11–c13=

ffiffiffi
3

p
and e33–c13=

ffiffiffi
3

p
(Fig. 6(a)) are investigated,

respectively. The radius of the circular strain paths is 0.03. Fig. 6(b) shows respectively the stress loci in the
corresponding r–

ffiffiffi
3

p
s planes. It can be seen that the stress locus in the r11–

ffiffiffi
3

p
s12 plane is nearly a circle,

which coincides with the isotropic property in this plane of the colony (Fig. 2(a)). Compared with the above
response, the stress locus r11–

ffiffiffi
3

p
s13 corresponding to the circular path in e11–c13=

ffiffiffi
3

p
plane shows marked

anisotropy. So does the stress locus r33–
ffiffiffi
3

p
s13 corresponding to the circular path in e33–c13=

ffiffiffi
3

p
plane.

Marked difference between the stress loci r11–
ffiffiffi
3

p
s13 and r33–

ffiffiffi
3

p
s13 can also be detected. It, again, indicates

the anisotropy of the overall responses of the pearlitic colony.
The variation of the ratcheting rate of the single pearlitic colony subjected to asymmetrical cyclic stress

r11 is numerically investigated under plane-strain condition (e22 � 0). Fig. 7(a) shows r11–e11 evolution
where r11 varies between �100 and 600 MPa (with mean stress 250 MPa and stress amplitude 350 MPa). It
can be seen that the accumulated plastic strain ðe11Þaccu increases as the stress cycling proceeds, but its rate

Fig. 5. Response of a single pearlitic colony subjected to shear strain c12 and c13, respectively.
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ðde11Þaccu=dN gradually decreases (Fig. 7(b)), which qualitatively coincides with the observation in the
experiment of pearlitic rail steel (Peng and Ponter, 1994b). It is known that during the asymmetrical cyclic
stress, the redistribution of the mean stress in both phases determines the ratcheting state. If the cementite
(hard phase) is fully elastic, the ratcheting will stop when the accumulated strain is sufficiently large, so that
the cementite can take over all the mean stress and the ferrite will be solely subjected to symmetric cyclic
stressing (Peng and Ponter, 1994b). If the cementite is elastoplastic, as assumed in this work, the situation
becomes complicated and the redistribution of the mean stress is determined by the elastoplastic properties
of both phases. Fig. 9(a) shows the variation of the mean deviatoric stresses in both ferrite and cementite
phases ignoring the volumetric stress that does not contribute to accumulated strain. It can be seen that the
mean deviatoric stress in the ferrite decreases and tends to vanish, but the mean deviatoric stress in ce-
mentite sc11 is much larger and governs the ratcheting rate in the cyclic process. The decrease of sc11 during
cyclic process may account for the decrease of the ratcheting rate.

Fig. 8(a) shows the relationship between r33 and e33 where r33 varies between �100 and 600 MPa
(250� 350 MPa) under plane-strain condition (e22 � 0). It can be seen that the response in this case is
similar to that one in the x1 direction as shown in Fig. 7. The variation of the mean deviatoric stress in the
ferrite is smaller to that shown in Fig. 9(a). The mean deviatoric stress in the cementite increases and
approaches to a steady value, which implies the corresponding steady state of ratcheting.

5. FEM simulation

The relationships in Eqs. (16)–(18) were obtained based on the assumption of very fine lamellas. In order
to demonstrate the validity of the above approach, the responses of pearlitic colonies with different in-
terlamellar spacing are analyzed with finite element method.

The response of the pearlitic colony subjected to tensile strain e33 is analyzed. For simplicity, the pearlitic
colony is assumed to be a cylinder and its axis is perpendicular to the lamellas, the radius and the inter-
lamellar spacing of the cylinder are denoted by R and a, respectively. Axisymmetrical finite element code is
used. Due to symmetry, the upper-right quarter of the vertical section of the cylinder was adopted for the
analysis (Fig. 2(b)). It is further separated into n
 n elements with ðnþ 1Þ2 nodes in total.

Fig. 6. Responses along circular paths in different e–c=
ffiffiffi
3

p
planes: (a) 90� out-of-phase circular strain path and (b) stress loci in r–

ffiffiffi
3

p
s

planes.
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The numbers of lamellas used in computation were 7, 11, 15 and 19, and the corresponding n was 5, 8, 11
and 14, respectively. Uniform vertical displacement is prescribed to each of the upper nodes. The average
saturated stress r33 is defined as the ratio between the overall saturated vertical load and the area of the
cross-section.

The effect of the number of lamellas on the stress response of the pearlitic colony with R=a � 58 (or
logða=RÞ � �1:76) is shown in Fig. 10(a). It is obvious that the average saturated stress r33 is over predicted
if the number of the used lamellas is small. r33 decreases with the increasing number of lamellas and ap-
proaches an asymptotic value when the number of lamellas is sufficiently large. It is shown in Fig. 10(a) that
the proposed microstructure-based model provides this asymptotic value and the result by FEM simulation
is quite close to this value when 19 lamellas is used.

The effect of the interlamellar spacing a and the radius of lamellas R on the saturated stress is given
in Fig. 10(b). One can conclude that the larger the interlamellar spacing, the smaller is the saturated stress.
If the interlamellar spacing is sufficiently large, i.e., the thickness of a ferrite lamella is sufficiently large,
the saturated stress r33 is governed by the strength of ferrite. r33 tends to the value obtained by the
microstructure-based model (see Fig. 4) when the interlamellar spacing is sufficiently small. If the num-
ber of lamellas is 15, r33 ¼ 825 MPa when logða=RÞ ¼ �1:76, which is very close to the magnitude of

Fig. 7. Cyclic ratcheting in e11 direction: (a) cyclic r11–e11 curve and (b) variation of ðde11Þaccu=dN .
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819 MPa obtained with the proposed model. If the size of a pearlitic colony R ¼ 13 lm, the corresponding
a can be determined as 270 nm, which is much larger than the interlamellar spacing of that in either on-line

Fig. 8. Cyclic ratcheting in e33 direction: (a) cyclic r33–e33 curve and (b) variation of ðde33Þaccu=dN .

Fig. 9. Variations of the deviatoric stress in both phases versus accumulated strain: (a) variations of ðs11Þm and (b) variations of ðs33Þm.
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and full-length quenched rail steel (a ¼ 136 nm) or hot-rolled rail steel (a ¼ 190 nm). It demonstrates the
validity of proposed constitutive description in the application to the constitutive response of pearlitic rail
steel.

6. Conclusions

A pearlitic colony is composed of many thin lamellas of ferrite and cementite, its mechanical behavior
can be determined by its microstructure and the mechanical property of each phase. Based on this concept,
a constitutive description was obtained for a single pearlitic colony with the assumptions that the inter-
lamellar spacing is sufficiently small and, both ferrite and cementite are elastoplastic.

The responses of the single pearlitic colony were analyzed. It was found that under uniaxial strain in the
directions parallel to and perpendicular to the lamellas, the overall responses look similar but the stress
states are substantially different. In the latter case, larger volumetric stresses exist in both phases due to the
interaction between them. It, on one hand, may increase the overall strength, but on the other hand, may
induce damage in the ferrite. Analysis showed that compressive load results in more satisfactory stress
states in both phases, which accounts for the extensive use of such kind of materials as in rail steel.
Comparison between the responses of a single pearlitic colony under various proportional and non-pro-
portional loading shows distinct anisotropy.

When the colony is subjected to asymmetrical cyclic stress r11 or r33, it ratchets in the direction of mean
stress with decreasing rate. The mean deviatoric stress in ferrite phase tends to vanish, while that in ce-
mentite phase is kept at a high level, which governs the ratcheting of the pearlitic colony.

Finite element analysis was conducted to demonstrate the validity of the proposed approach. It was
shown that the proposed approach provides the asymptotic result as the interlamellar spacing is sufficiently
small and the number of lamellas is sufficiently large. It showed that the proposed approach could describe
with sufficient accuracy the constitutive behavior of the colony with moderate interlamellar spacing.

The constitutive response of each phase in a pearlitic colony can be obtained simultaneously, which is an
important step towards developing theories of a microstructure-based damage and failure analysis. The
proposed approach is also significant to the analysis of the constitutive behavior of pearlitic steel, which is
regarded as an aggregate of numerous pearlitic colonies with randomly distributed orientations.

Fig. 10. FEM simulation for the response of pearlitic colonies: (a) effect of the adopted number of lamellas and (b) effect of the in-

terlamellar spacing.
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Appendix A

Noticing the relationships shown in Eqs. (16) and (17), applying Eq. (10) to cementite gives

Drc
11

Drc
22

Dsc12
Drc

33

Dsc23
Dsc31

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

Dc
1111 Dc

1122 Dc
1112 Dc

1133 Dc
1123 Dc

1131

Dc
2211 Dc

2222 Dc
2212 Dc

2233 Dc
2223 Dc

2231

Dc
1211 Dc

1222 Dc
1212 Dc

1233 Dc
1223 Dc

1231

Dc
3311 Dc

3322 Dc
3312 Dc

3333 Dc
3323 Dc

3331

Dc
2311 Dc

2322 Dc
2312 Dc

2333 Dc
2323 Dc

2331

Dc
3111 Dc

3122 Dc
3112 Dc

3133 Dc
3123 Dc

3131

2
6666664

3
7777775

Dec11
Dec22
Dcc12
Dec33
Dcc23
Dcc31

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ðA:1Þ

Eq. (A.1) can be rewritten in the following laconic form

D�rrc

Dr̂rc


 �
¼ Ac

1 Ac
2

Ac
3 Ac

4

� 

Dêec

D�eec


 �
ðA:2Þ

in which

fD�rrcg ¼ Drc
11;Drc

22;Dsc12
� �T

; fDr̂rcg ¼ Drc
33;Dsc23;Dsc31

� �T
;

fDêecg ¼ Dec11;Dec22;Dcc12
� �T

; fD�eecg ¼ Dec33;Dcc23;Dcc31
� �T

;
ðA:3Þ

and Ac
1, A

c
2, A

c
3 and Ac

4 are shown in Eq. (23). It can easily be solved from Eq. (A.1) that

D�rrc

D�eec


 �
¼ Ac

2ðAc
4Þ

�1 Ac
1 � Ac

2ðAc
4Þ

�1Ac
3

ðAc
4Þ

�1 �ðAc
4Þ

�1Ac
3

� 

Dr̂r
Dêe


 �
: ðA:4Þ

Replacing superscript ‘‘c’’ with ‘‘f’’ one obtains the following expression for ferrite:

D�rrf

D�eef

( )
¼ Af

2ðAf
4Þ

�1 Af
1 � Af

2ðAf
4Þ

�1Af
3

ðAf
4Þ

�1 �ðAf
4Þ

�1Af
3

� 

Dr̂r
Dêe


 �
: ðA:5Þ

Making use of Eq. (18) one can obtain the following relationship:

D�rr
D�ee


 �
¼ V

D�rrc

D�eec


 �
þ ð1� V Þ D�rrf

D�eef

( )
¼ B1 B2

B3 B4

� 

Dr̂r
Dêe


 �
; ðA:6Þ

where B1, B2, B3 and B4 are shown in Eq. (22). Eq. (A.6) can be rewritten as

D�rr ¼ B1 Dr̂r þ B2 Dêe; D�ee ¼ B3 Dr̂r þ B4 Dêe: ðA:7Þ

It can be solved from Eq. (A.7) that

Dr̂r ¼ B�1
3 D�ee � B�1

3 B4 Dêe; D�rr ¼ B1B�1
3 D�ee � ðB1B�1

3 B4 � B2ÞDêe; ðA:8Þ

which is just Eq. (20).
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