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Abstract

A constitutive description is proposed for a single pearlitic colony based on its composition of lamellas of ferrite and
cementite with a very thin interlamellar spacing. Both phases are assumed to be elastoplastic. The relationship between
the increments of overall stress and strain is derived and the corresponding numerical algorithm is developed. The
mechanical behavior of the colony subjected to proportional or non-proportional loading is investigated, and it shows
that the overall response is anisotropic. Finite element analysis is conducted to analyze the influence of the interlamellar
spacing on the mechanical response of the colony. It shows that the proposed model can not only describe the behavior
of the pearlitic colony with extremely small interlamellar spacing, but also work with sufficient accuracy in the case of
moderate interlamellar spacing. The constitutive response of each phase in a colony can be obtained simultaneously,
which is an important step towards developing theories of microstructure-based damage and failure analysis. © 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Pearlitic steel is composed of numerous pearlitic colonies with randomly distributed orientations. Each
colony is composed of many alternatively arranged parallel thin lamellas of ferrite and cementite. The
pearlitic steel with fine lamellas possesses excellent mechanical properties such as high strength, good re-
sistance against wear, and high fatigue life, etc. (Langford, 1977; Clayton, 1980; Hodson and Preston, 1980;
Petez-Unzueta and Beynon, 1995; Sheng et al., 1998).

One of the most important properties of this kind of dual-phase materials is its locking-in interphase
residual stress capability (Bower, 1989). When the material is subjected to asymmetrical stress cycling, it
ratchets in the direction of mean stress, but the rate decreases gradually during the cycling. If the mean
stress is then removed, the material will ratchet back in the opposite direction during the following cyclic
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process, despite that the mean stress no longer exists (Bower, 1987, 1989; Bower and Johnson, 1989, 1990;
Peng and Ponter, 1994a). This particular behavior accounts for the extensive use of the material for rail
steel. Practically, the stress induced by rail/wheel contact is typically asymmetrical, but the ratcheting of
the material is strictly limited.

A constitutive model for pearlitic rail steel was proposed by Bower (1989) and Bower and Johnson
(1990), in which a new kinematic variable was introduced by modifying the model of Armstrong and
Frederick (1966). It greatly improved the description of the ratcheting behavior of the pearlitic steel. Peng
and Ponter (1994a) proposed a model, which separates the plastic deformation of pearlitic steel into the
plastic deformation of its soft phase and the elastic—plastic deformation of its hard phase. It can describe
the more complicated response of pearlitic steel, for instance, the non-vanishing steady ratcheting rate
during asymmetrical stress cycling. It was shown that, assuming an elastic hard phase, this model could be
reduced to Bower’s model (Peng and Ponter, 1994a). A micro/macroscopic analysis for the cyclic plasticity
of dual-phase pearlitic material was recently proposed by Fan (1999), taking into account the lamellar
microstructure of a single pearlitic colony. A self-consistent scheme was used to obtain the macroscopic
response, with which the cyclic plasticity of BS11 and the local stress evolution were analyzed.

The locking-in interphase residual stress capability and the plastic shakedown behavior of the dual-phase
material are closely related to the interaction between its two phases. In order to have an insight of the
particular macroscopic behavior, it is necessary to deeply understand the response of a single pearlitic
colony and its microstructural dependence.

In this paper, starting from the lamellar microstructure, a description for a single pearlitic colony is
obtained by assuming both ferrite and cementite phases being elastoplastic. The relationship between in-
cremental stress and strain, and the corresponding numerical algorithm are derived. The predicted behavior
of a single pearlitic colony subjected to proportional and non-proportional loading is investigated. It is
shown that the overall constitutive response is, in general, anisotropic due to the interaction between the
two phases. Finite element analysis is employed to study the influence of the interlamellar spacing on the
response of the colony. It can be seen that, the proposed model can not only describe the behavior of a
pearlitic colony with extremely small interlamellar spacing, but also predict with sufficient accuracy the
behavior of a colony with moderate interlamellar spacing. The constitutive response of the ferrite and
cementite phases in a colony can be obtained simultaneously, which is important for the development of a
microstructure-based damage and failure analysis.

2. Constitutive equation for elastoplastic media

As shown in Fig. 1, a pearlitic colony is composed of many fine lamellas of cementite and ferrite. In Fig.
1(a) the material was taken from the head of a rail which was on-line and full-length directly quenched after

Fig. 1. The observed microstructure of a pearlitic steels: (a) quenched directly after rolling; (b) hot rolled.
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rolling, while the material in Fig. 1(b) was taken from the head of a hot-rolled rail. It is clear that the
orientations of lamellas are almost identical. The average interlamellar spacing in Fig. 1(a) is around 136
nm while it is around 190 nm in the other case (Fig. 1(b)). The corresponding average sizes of both pearlitic
colonies are about 13 um in diameter.

In pearlitic steel, ferrite phase serves as the soft phase while cementite represents the hard phase. The
strength of cementite is much higher than that of ferrite. The mechanical behavior of a pearlitic steel de-
pends strongly on that of cementite although the volume fraction of cementite V is only about 15%. It has
been found that the plastic deformability and the failure mode of cementite are closely related to the
thickness of cementite lamella. Langford (1977) pointed out that there is no evidence for gross plastic
deformation of cementite plates thicker than 0.1 um, and there is no evidence for extensive, brittle frag-
mentation of cementite plates thinner than 0.01 pm. Noting that the average thickness of the cementite
plates in commercial pearlitic rail steels is mostly less than 0.03 pm, it can be conjugated that these ce-
mentite plates are fully or mostly plastic (Langford, 1977). Langford (1977) also demonstrated that, in
order for pearlite to work harden as it does, lamellar cementite must be ductile, because the generation of
the dislocations required in the pile-ups absorbs a significant fraction of the work of deformation. In the
following analysis, both cementite and ferrite are assumed to be elastoplastic.

For an initially isotropic and plastically incompressible continuum, an elastoplastic model was proposed
by Fan and Peng (1991) under the condition of isothermal and small deformation. It is related to the
endochronic plastic constitutive equation (Valanis, 1980), model of Chaboche et al. (1979) and some other
constitutive models (Peng et al., 1996; Chaboche, 1986; Watanabe and Atluri, 1986). The corresponding
incremental form of the constitutive equation can be expressed as (Peng and Fan, 1993)

As(z) = AAe® + B(z,)Az, (1)

where As and AeP are the increments of deviatoric stress and plastic strain, respectively,
A=Y "kC,  B(z)=-> kus’(z), (2)
r=1 r=1

1 —e %4

(r) _ p_ (r) — =7
As\(z) = k. (C. Ae? — 0,8 (z2,))Az, k. A Az=z—z, (3)

z is generalized time which is non-negative and increases monotonically during any plastic deformation
process due to the following definition of Az:

A{

Az:%, A = AeP : AeP, (4)
f(z) is a hardening function, C, and «, (r = 1,...,n) are material constants. Substituting the incremental
form of elastic constitutive equation
As
Ae — AeP = Xe (5)
into Eq. (1) leads to the following incremental elastoplastic constitutive equation (Peng and Fan, 1993)
As = 2G,Ae + T,BAz, (6)

where e denotes deviatoric strain tensor, G is elastic shear modulus, and

A -1
T, = <1 +%> . 2G, = AT, (7)
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Rewriting Eq. (4) as

_ . AeP

AZ fZAZ ¢ (8)
and making use of the following relationships

As = Ac — lr(Ao)l, Ae = Ag — itr(Ag)ly, tr(Ae) = 3Ktr(Ag) 9)

with ¢ and € being respectively stress and strain tensors, K elastic volumetric modulus, and I, being the
identity tensor of rank two, one can derive the incremental constitutive equation as follows: (Peng and Fan,
1993)

{Aa} = [DI{Ae}, (10)
where [D] represents tangential elastoplastic stiffness matrix which consists of two parts:
2(G - Gp)
[D] = UM‘FTP[D;)]- (11)

For a general 3-D problem, these matrices can be expressed as
{Ac} = (Ac1y, Aoy, Adss, Atiy, Atys, Atyy)

T (12)
{Ae} = (Aen, Aen, Aesy, Ayyy, Ays, Ayy)
¢ G ¢ 0 0 0
G ¢ ¢ 0 0 0
|G G ¢ 0 0 0
[De] - O 0 0 Gp 0 0 ) (13)
0 0 0 0 G, O
0 0 0 0 0 G
being an elastic-like matrix,
[Dp] = C3{B]] 322 B33 B]z 323 B31 }T( Ae‘fl Ae‘z)z Ae§3 Ae‘l)z A€I2)3 Aegl ) (14)
taking into account the contribution of the history and the current state of plastic strain to [D], and
G =K+%G,, GC=K-1G,
T, (15)
Cy=~2— H =1+ CB: Ae’.
' 726G EA TR

3. Constitutive model for a pearlitic colony

A cell of a pearlitic colony is shown in Fig. 2(a), where the white layers represent ferrite lamellas while
the black represent cementite ones. It is assumed that all the ferrite and cementite lamellas are parallel with
each other, alternatively arranged with perfect bond, and with a constant interlamellar spacing. A coor-
dinate system is fixed on the cell with x;x, plane parallel to the lamellas and x3 perpendicular to the lamellas.
The thickness of each lamella is assumed to be sufficiently small so that the variations of stress and strain
in a lamella can be neglected. The in-plane strain components and out-of-plane stress components in all
lamellas are, therefore, identical and equal respectively to the corresponding components of the overall
strain and stress of the cell to meet the condition of compatibility, i.e.,

dejy = dgil = deyy, des, = d‘qu = den, dyl, = dVEz =dyy,, (16)
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Fig. 2. Lamellar microstructure of a pearlitic colony cell and FE mesh: (a) a cell of a pearlitic colony and (b) FE mesh of the cell.

do§; = da§3 = dos3, dej, = d‘cg3 =dr1y3, des, = d‘c£3 = d1y3, (17)

where the superscripts ¢ and f represent cementite and ferrite, respectively.
The other components of stress and strain can be determined by volume average as follows:

Acyy = VAsj, + (1 - V)Aafj, ij=11,22,12

18
Aey; = VAE, + (1 — V)Ag);, ij =33,23,13, (18)

where V is the volume fraction of cementite. Using Eq. (10), the incremental constitutive equations of
cementite and ferrite can be expressed as

{Ac} = DA}, {Ad'} = [D){AS. (19)

Substituting Eq. (19) into Eq. (18) yields the following incremental elastoplastic constitutive equation for a
pearlitic colony (see Appendix A):

AG - Bz—BlBng4 BlBgl A& (20)
Aé | —B3'B,y B! Ag |’

with
{A&} = (AO’]], AO'227 A'L’]z )T, {Aé’} = (AO’337 A'L’23, A’E13 )T, (21)
{Ag} = (Aess, Ayy,  Apps )T7 {Ae} = (Aen, Aeyn, Ay )Tv
= VAS(45)”" + (1 = V)Ay(45) ™,
¢ —1 4 =1
= VU] — A3(45) " A5) (1= V)] — i)' )
By=V(45)" + (1 -V)y)”
By =~V (45) 45 — (1= V)(4) 4]
and
_D?m Dii D?llz_ -Dfm Dfps Dim_
[Aﬂ = | D5 D5y Diypy | [ 3} = D§233 D§223 D§231 )
_D§211 Dy, D§212_ _DT233 Diys D?231_ (23)
D5y Disyy Dy Diy55 Dy Disy
[Ai] = | D5y Dy Dispn | [AZ] = | D3y Diypy Dy |
_D§111 D5 Dgnz_ _D§133 D555 ng_
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where Dy, denotes element jjk/ in the tangential elastoplastic matrix of cementite [Df] (see Egs. (11), (13),
(14) and (19)). Replacing the element D;;, with ijk, in the tangential elastoplastic matrix of ferrite [D'], one
immediately obtains 4] through A} from Eq. (23).

Eq. (20) describes the overall elastoplastic behavior of a pearlitic colony, which takes into account
the microstructure and the cementite volume fraction. It can be seen that the tangential elastoplastic matrix
is anisotropic, which is associated with the anisotropic nature of a pearlitic colony. It is important to
note that the constitutive description for ferrite and cementite plates in a pearlitic colony can be ob-
tained simultaneously by Eq. (19), giving rise to understand the individual constitutive behavior of each
phase.

4. Analysis of the elastoplastic response of a single pearlitic colony

In this section, the responses of a single pearlitic colony subjected to proportional and non-proportional
straining, and the cyclic ratcheting under asymmetrical loading are analyzed using the proposed consti-
tutive model.

It has been reported that the elastic properties of both the ferrite and the cementite are almost identical
(Langford, 1977) and in the following they are prescribed as

E¢ = E' = E =210 GPa, G° = G" = G =80 GPa,

where E¢ and E' are respectively the Young’s moduli of cementite and ferrite, G° and G are the elastic shear
moduli of the two phases, respectively, and E and G are the Young’s modulus and the elastic shear modulus
of the corresponding pearlitic colony, respectively. According to the assessment of the strengths of ferrite
and cementite (Langford, 1977; Park and Bernstein, 1979), the following plastic properties are assumed in
the following analysis:

Cl,, = (450,80,4.1) GPa, ol ,, =4000,420,74,
1,5 = (9500,2800,650) GPa, o, = 50000, 3000, 400.

For the sake of simplicity without losing generality, the hardening function is assumed to be equal to one
for both ferrite and cementite. It can be easily found, for the given material parameters, that the strength of
cementite is about seven times that of ferrite. In the following analysis, the volume fraction of cementite V'is
prescribed as 13%.

The numerical process for a stress-controlled condition can be stated as follows:

(a) With the results obtained by the kth iteration of the ith increment of loading, the tangential elasto-
plastic matrices [D¢] and [Df] can be obtained using Eq. (11).

(b) Calculate B; (i = 1,2,3,4) by Eq. (22), and then elastoplastic matrix of a pearlitic colony [D] by Eq.
(20).

(c) For a given increment of overall stress {Ac}, the corresponding increment of overall strain {A¢} can
be determined by solving Eq. (20).

(d) The increments of the unknown stress and strain components for the cementite and ferrite {Ag°},
{Ac'}, {A&} and {A&'} can then be respectively derived using Eqs. (A.4) and (A.5).

(e) For cementite, the incremental deviatoric stress {As®} and strain {Ae°}, the generalized time incre-
ment A{® and the hardening function f¢(z°) as well as Az® can be calculated by Eq. (4). For ferrite,
the corresponding quantities can be obtained similarly.

(f) Calculating {As"*} and {As")} by Eq. (3) and modifying {B} and {B"} by Eq. (2), respectively.
(g) If the following defined error ¢ is less than the tolerance dy, i.e.,
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Azf — Az
) AZk

AZE — AZF!
0 = max H lAz’-‘ !

1

:|<60a

c f

then the iteration for the ith increment of loading is terminated. After modifying the corresponding
quantities, one starts the next increment of loading.

For a strain-controlled condition, the similar algorithm can be performed without difficulty.

Fig. 3 shows the response of a single pearlitic colony subjected to & (tensile strain in x; direction). It is
known from Eq. (16) that the ferrite and cementite lamellas undergo an identical strain &;;, and their re-
sponses are also shown in Fig. 3. The maximum stress in ferrite is only around 435 MPa, while in the case of
cementite, this value is clearly higher, i.e., 3374 MPa. The saturated stress of the pearlitic colony is about
819 MPa, being easily obtained by Eq. (18).

The response of a single pearlitic colony subjected to uniaxial strain ¢33 (tensile strain in x3 direction) is
given in Fig. 4. Computation shows that the overall saturated value of ¢33 in the pearlitic colony is also
about 819 MPa, which is approximately identical with the saturated value of oy, corresponding to the
uniaxial strain ¢; (Fig. 3). In this direction, the tensile stresses in the ferrite and cementite are almost
identical with the overall stress component o33, i.e., a§3 = 05; = 033 = 819 MPa (Eq. (17)). It has already
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Fig. 3. Response of a single pearlitic colony subjected to uniaxial strain ¢;.
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Fig. 4. Response of a single pearlitic colony subjected to uniaxial strain &s;.
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greatly exceeded the tensile strength of ferrite. Detailed analysis shows that in this case the equivalent
stresses o and ¢¢ in the ferrite and cementite are respectively 435 and 3374 MPa (Fig. 4). These magnitudes
are similar to those related to uniaxial strain ¢;;. But, the volumetric stresses ¢%, and of,, in both phases are
1585 and —4287 MPa (Fig. 4), respectively. This is quite different from those in the colony subjected to
uniaxial strain ¢;;, where the volumetric stresses in both the ferrite and cementite phases are identical to the
values of ¢!, and ¢¢,. Although the existence of the tensile volumetric stress increases the load-baring
capability of ferrite to some extent, it increases the risk of the initiation and growth of damage. If the single
pearlitic colony is compressed in x3 direction, the volumetric stresses in ferrite will become negative while
that in cementite positive. The compressive volumetric stress helps reducing damage in ferrite, while the
tensile volumetric stress in cementite may be acceptable because of the much higher strength of cementite,
which accounts for the extensive application of pearlitic steel as rail steel.

When a single pearlitic colony is subjected to pure shear strain y,;, computation shows that the saturated
shear stress 1}, = 75, = 713 = 253 MPa, and the saturated equivalent stress is 437 Pa (Fig. 5), being just the
strength of ferrite. It indicates that when a single pearlitic colony is subjected to 7,3, its strength is solely
determined by the strength of ferrite. The relationship between the equivalent stress and strain of the colony
subjected respectively to y,, is also shown in Fig. 5. In this case, the saturated equivalent stress is about 819
MPa, being the combination of the strengths of ferrite and cementite by their volume fractions (Eq. (17)).
The comparison between the two shear stress—strain responses indicates the anisotropy of the pearlitic
colony.

In order to study the anisotropic property of a single pearlitic colony, the stress responses along 90° out-
of-phase circular paths in the planes of &1—y,,/v/3, £11—7,3/v/3 and ex3—y,5/v/3 (Fig. 6(a)) are investigated,
respectively. The radius of the circular strain paths is 0.03. Fig. 6(b) shows respectively the stress loci in the
corresponding o—/37 planes. It can be seen that the stress locus in the a;—v/37;, plane is nearly a circle,
which coincides with the isotropic property in this plane of the colony (Fig. 2(a)). Compared with the above
response, the stress locus o, =313 corresponding to the circular path in g;,—,5/ V3 plane shows marked
anisotropy. So does the stress locus a33;—/37;3 corresponding to the circular path in e3—y,3/v/3 plane.
Marked difference between the stress loci a11—v/3713 and a33—v/31)3 can also be detected. It, again, indicates
the anisotropy of the overall responses of the pearlitic colony.

The variation of the ratcheting rate of the single pearlitic colony subjected to asymmetrical cyclic stress
a1 1s numerically investigated under plane-strain condition (&, = 0). Fig. 7(a) shows o;—¢; evolution
where a1, varies between —100 and 600 MPa (with mean stress 250 MPa and stress amplitude 350 MPa). It

can be seen that the accumulated plastic strain (g;),., increases as the stress cycling proceeds, but its rate
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Fig. 5. Response of a single pearlitic colony subjected to shear strain y,, and y,;, respectively.
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Fig. 6. Responses along circular paths in different &-y/+/3 planes: (a) 90° out-of-phase circular strain path and (b) stress loci in 6—/3t
planes.

(dei1) oon /AN gradually decreases (Fig. 7(b)), which qualitatively coincides with the observation in the
experiment of pearlitic rail steel (Peng and Ponter, 1994b). It is known that during the asymmetrical cyclic
stress, the redistribution of the mean stress in both phases determines the ratcheting state. If the cementite
(hard phase) is fully elastic, the ratcheting will stop when the accumulated strain is sufficiently large, so that
the cementite can take over all the mean stress and the ferrite will be solely subjected to symmetric cyclic
stressing (Peng and Ponter, 1994b). If the cementite is elastoplastic, as assumed in this work, the situation
becomes complicated and the redistribution of the mean stress is determined by the elastoplastic properties
of both phases. Fig. 9(a) shows the variation of the mean deviatoric stresses in both ferrite and cementite
phases ignoring the volumetric stress that does not contribute to accumulated strain. It can be seen that the
mean deviatoric stress in the ferrite decreases and tends to vanish, but the mean deviatoric stress in ce-
mentite s§, is much larger and governs the ratcheting rate in the cyclic process. The decrease of s§, during
cyclic process may account for the decrease of the ratcheting rate.

Fig. 8(a) shows the relationship between o33 and &33 where o33 varies between —100 and 600 MPa
(250 350 MPa) under plane-strain condition (¢, = 0). It can be seen that the response in this case is
similar to that one in the x, direction as shown in Fig. 7. The variation of the mean deviatoric stress in the
ferrite is smaller to that shown in Fig. 9(a). The mean deviatoric stress in the cementite increases and
approaches to a steady value, which implies the corresponding steady state of ratcheting.

5. FEM simulation

The relationships in Egs. (16)—(18) were obtained based on the assumption of very fine lamellas. In order
to demonstrate the validity of the above approach, the responses of pearlitic colonies with different in-
terlamellar spacing are analyzed with finite element method.

The response of the pearlitic colony subjected to tensile strain e;3 is analyzed. For simplicity, the pearlitic
colony is assumed to be a cylinder and its axis is perpendicular to the lamellas, the radius and the inter-
lamellar spacing of the cylinder are denoted by R and a, respectively. Axisymmetrical finite element code is
used. Due to symmetry, the upper-right quarter of the vertical section of the cylinder was adopted for the
analysis (Fig. 2(b)). It is further separated into n x n elements with (n + 1)2 nodes in total.
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Fig. 7. Cyclic ratcheting in ¢, direction: (a) cyclic |,—¢; curve and (b) variation of (de;),,/dN.

The numbers of lamellas used in computation were 7, 11, 15 and 19, and the corresponding n was 5, §, 11
and 14, respectively. Uniform vertical displacement is prescribed to each of the upper nodes. The average
saturated stress o33 is defined as the ratio between the overall saturated vertical load and the area of the
cross-section.

The effect of the number of lamellas on the stress response of the pearlitic colony with R/a =~ 58 (or
log(a/R) ~ —1.76) is shown in Fig. 10(a). It is obvious that the average saturated stress 33 is over predicted
if the number of the used lamellas is small. o33 decreases with the increasing number of lamellas and ap-
proaches an asymptotic value when the number of lamellas is sufficiently large. It is shown in Fig. 10(a) that
the proposed microstructure-based model provides this asymptotic value and the result by FEM simulation
is quite close to this value when 19 lamellas is used.

The effect of the interlamellar spacing ¢ and the radius of lamellas R on the saturated stress is given
in Fig. 10(b). One can conclude that the larger the interlamellar spacing, the smaller is the saturated stress.
If the interlamellar spacing is sufficiently large, i.e., the thickness of a ferrite lamella is sufficiently large,
the saturated stress ags; is governed by the strength of ferrite. o33 tends to the value obtained by the
microstructure-based model (see Fig. 4) when the interlamellar spacing is sufficiently small. If the num-
ber of lamellas is 15, o33 = 825 MPa when log(a/R) = —1.76, which is very close to the magnitude of
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Fig. 9. Variations of the deviatoric stress in both phases versus accumulated strain: (a) variations of (sy;),, and (b) variations of (s33),,.

819 MPa obtained with the proposed model. If the size of a pearlitic colony R = 13 um, the corresponding
a can be determined as 270 nm, which is much larger than the interlamellar spacing of that in either on-line
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Fig. 10. FEM simulation for the response of pearlitic colonies: (a) effect of the adopted number of lamellas and (b) effect of the in-
terlamellar spacing.

and full-length quenched rail steel (¢ = 136 nm) or hot-rolled rail steel (¢ = 190 nm). It demonstrates the
validity of proposed constitutive description in the application to the constitutive response of pearlitic rail
steel.

6. Conclusions

A pearlitic colony is composed of many thin lamellas of ferrite and cementite, its mechanical behavior
can be determined by its microstructure and the mechanical property of each phase. Based on this concept,
a constitutive description was obtained for a single pearlitic colony with the assumptions that the inter-
lamellar spacing is sufficiently small and, both ferrite and cementite are elastoplastic.

The responses of the single pearlitic colony were analyzed. It was found that under uniaxial strain in the
directions parallel to and perpendicular to the lamellas, the overall responses look similar but the stress
states are substantially different. In the latter case, larger volumetric stresses exist in both phases due to the
interaction between them. It, on one hand, may increase the overall strength, but on the other hand, may
induce damage in the ferrite. Analysis showed that compressive load results in more satisfactory stress
states in both phases, which accounts for the extensive use of such kind of materials as in rail steel.
Comparison between the responses of a single pearlitic colony under various proportional and non-pro-
portional loading shows distinct anisotropy.

When the colony is subjected to asymmetrical cyclic stress a1 or o33, it ratchets in the direction of mean
stress with decreasing rate. The mean deviatoric stress in ferrite phase tends to vanish, while that in ce-
mentite phase is kept at a high level, which governs the ratcheting of the pearlitic colony.

Finite element analysis was conducted to demonstrate the validity of the proposed approach. It was
shown that the proposed approach provides the asymptotic result as the interlamellar spacing is sufficiently
small and the number of lamellas is sufficiently large. It showed that the proposed approach could describe
with sufficient accuracy the constitutive behavior of the colony with moderate interlamellar spacing.

The constitutive response of each phase in a pearlitic colony can be obtained simultaneously, which is an
important step towards developing theories of a microstructure-based damage and failure analysis. The
proposed approach is also significant to the analysis of the constitutive behavior of pearlitic steel, which is
regarded as an aggregate of numerous pearlitic colonies with randomly distributed orientations.
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Appendix A

Noticing the relationships shown in Eqgs. (16) and (17), applying Eq. (10) to cementite gives

Aa, DYy Dimy Dinn Diiss Dis Dis Ag‘lil
Ao, DS DSy D51y Diyzs Doz Doy Ae3,
A1, _ | Pan Diam Diyy Dinss Diys Diy Ay,
A C C C C C C C A C * (A'l)
033 DSy DSy Dizn Dizss Dizys D €33
A'Eﬁa D%}l 1 Dzszz D33, D§333 D%m D§331 AV%}
At DSy D DSy Dijss Dz Diyg Aysy
Eq. (A.1) can be rewritten in the following laconic form
A 48 4] Ae
(rp - ) *
in which
=C C C C T ~C C C C T
{Ac} = (Aau’Aazszle) ) {Ac} = (A‘7337AT237A731) ) (A3)
oC C C C T aC C C C T ’
{A&} = (As”,Aszz,A"/lz) , {AE°} = (As33,Ay23,Ay3l) ,
and 4, 45, A5 and A5 are shown in Eq. (23). It can easily be solved from Eq. (A.1) that
AG® AS(AS) TN A4S —A5(49) ' as] [ AG
AT = -1 =1 ¢ AA . (A4)
é (43) —(43) A3 ¢

Replacing superscript “c” with “f”” one obtains the following expression for ferrite:
Ao’ | _ [45(Ay) " ) —Ab(4y) A ] fAG ) (A.S)
Al R AR AW

Making use of Eq. (18) one can obtain the following relationship:

(b -rfartra-nfart- 12 2){4) =
where B;, By, B; and B, are shown in Eq. (22). Eq. (A.6) can be rewritten as

AG = B1 AG + B Aé, A& = B3 A6 + B4 Aé. (A7)
It can be solved from Eq. (A.7) that

A6 = B;' At — By'ByAé,  AG = BB;' A — (BiB;'By — B))A:, (A.8)

which is just Eq. (20).
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